possibly an indication that small amounts of Ti⁴⁺ ion, from his titanium vessels, are in his garnet. (This is also indicated by the large value for the Cd₃V₂Si₃O₁₂; it should be smaller than for the Ca compound in line with the relative values for the analogous Al compounds.) The value of 12.070 Å obtained by STRENS³⁰ seems better in relation to 12.067 for the Ca₃Fe₂Si₃O₁₂. The value, 12.068 Å, for the Ca₃V₂Si₃O₁₂ garnet that we synthesized is in very good agreement with STRENS value.

I would also have expected the lattice constant of $\rm Ca_3Ga_2Si_3O_1$ to be larger than that of $\rm Ca_3Cr_2Si_3O_{12}$.

Germanate garnets

There are many new garnets among the simple end-member germanates (Table 4). Fifteen are listed in Table 4 which involve trivalent yttrium or a rare-earth ion in the a sites and the Ca²⁺ or Sr² ion in the c sites. Those with the Sr²⁺ ion all have lattice constant greater than 13.00 Å, the largest garnet unit cells known to date All were made by solid-state reaction ⁴⁹. Mill has synthesized some germanates hydrothermally ^{29,47,49} but all the germanate garnets can be made by solid-state reaction including Mn₃V₂Ge₃O₁₂.

The lattice constant, 12.35 Å, given by MILL for Ca₃V₂Ge₃O₁₂ again high with respect to either of the values for the Fe compound. For a specimen of Ca₃V₂Ge₃O₁₂ which we prepared, we obtained a value of 12.320 Å. This was synthesized by firing an appropriate compacted mixture of CaGeO₃ and V₂O₃ in an evacuated sealed fused silica ampulat 960 °C for 1 hour. The specimen was reground, recompacted and fired in the same manner for an additional hour at 960 °C. The powder photograph showed a faint extra line indicating the presence of a extra phase, possibly Ca₂Ge₃O₈. It is not impossible that some V⁵⁺ in is incorporated in our specimen, tending to give too large a value for the lattice constant.

We have similarly synthesized a specimen of $\mathrm{Mn_3V_2Ge_3O_{12}}$. A appropriate mixture of $\mathrm{Mn_2GeO_4}$, $\mathrm{V_2O_3}$ and $\mathrm{GeO_2}$ was compacted into a pellet, sealed in an evacuated fused silicatube and broughfrom 400° to 950°C in 1 hour, then allowed to remain at 950°C for 2 hours. A garnet with sharp back-reflection lines in the powder photograph (CrK radiation) was obtained having $a=12.099\,\mathrm{\AA}$ and opposed to the value 12.125 Å found by Mill for his specime. On the basis of the reasoning given earlier, we suspected that Mill lattice constant for this garnet, which he prepared hydrothermally

was too high (as is the case for all his other vanadium garnets so prepared). Our value is 0.026 Å less than his, but is, nevertheless, still somewhat higher than that for the analogous iron compound.

There are actually at least three possible reasons for this: 1) In view of the closeness of lattice-constant values for the analogous V¹⁻ and Fe³⁺ garnets, the sizes of the V³⁺ and Fe³⁺ ions may be equal or the V³⁺ ion may even be slightly larger than the Fe³⁺ ion. 2) Some pentavalent V⁵⁺ ions may be in the tetrahedral sites. 3) Some of the remanate garnets are difficult to obtain as decidedly single phases. There is some evidence ^{43,44} that it is possible that they have vacancies of some sort, which probably would affect the lattice-constant values.

I do not believe that any of these possibilities can be ruled out at this time. The weight of the evidence from the lattice constants alone favors the conclusion that the size of the V^{3+} ion is equal to or slightly greater than that of the Fe³⁺ ion. Actually this does not affect results of theory ^{50,51}; the list of radii given above cannot be considered to be perfect. Further, the surroundings of the ions in the perovskite-like ⁵² and garnet structures may be just sufficiently different to give slight size differences. Another example is that of Mn³⁺ ion which also appears to be slightly smaller than the Fe³⁺ ion in perovskites ¹² but the same size as the Fe³⁺ ion in the bixbyite structure, in which case no significant change in lattice constant is observed ⁵³ for $(Mn_{1-x}Fe_x)_2O_3$ for $0.01 \le x \le 0.50$. (We have found ⁵⁴ that α Mn₂O₃ itself does not have the bixbyite structure.)

With regard to the Mn³⁺ ion, we had managed⁵⁵, apparently, to substitute this ion for 2°/₀ of the Fe³⁺ ion in yttrium iron garnet, but

⁵⁰ J. H. VAN SANTEN and J. S. VAN WIERINGEN, Ionic radii of iron-group elements. The influence of crystalline field. Rec. trav. chim. Pays-Bas 71 (1952) 420–430.

⁵¹ A. D. Liehr, Ionic radii, spin-orbit coupling and the geometrical stability of inorganic complexes. Bell Syst. Tech. Jour. 39 (1960) 1617—1626.

⁵² S. Geller, Crystal structure of gadolinium orthoferrite. J. Chem. Physics. 24 (1956) 1236—1243; P. Coppens and M. Eibschütz, Determination of the crystal structure of yttrium orthoferrite and refinement of gadolinium orthoferrite. Acta Crystallogr. 19 (1965) 524—531.

⁵³ S. Geller, R. W. Grant, J. A. Cape and G. P. Espinosa, Magnetic behavior of the system Mn₂O₃—Fe₂O₃. J. Appl. Physics 38 (1967) 1457—1458.

⁵¹ S. Geller, J. A. Cape, R. W. Grant and G. P. Espinosa, Distortion in the crystal structure of α-Mn₂O₃. Physics Letters 24A (1967) 369—371.

⁵⁵ S. Geller, H. J. Williams, R. C. Sherwood and G. P. Espinosa, Substitutions of divalent manganese, iron and nickel in yttrium iron garnet. J. Physics Chem. Solids 23 (1962) 1525—1540.